
Routing in Delay Tolerant Networks with Fine-Grained
Contact Characterisation and Dynamic Message Replication

Luming Wan, Haibo Zhang, Feiyang Liu, and Yawen Chen
Department of Computer Science, University of Otago, Dunedin 9016, New Zealand

Email:{luming, haibo, feiyang, yawen}@cs.otago.ac.nz

Abstract—Pairwise contacts in Delay-Tolerant Networks
(DTNs) for applications such as bus or smartphone based social
networking commonly show some regular repeating patterns.
Most existing routing protocols only implicitly exploit these
patterns to predict future contacts. To enhance message delivery
rate, most of the schemes allow messages to be replicated
and forwarded to encountered nodes. However, there is no
efficient mechanism for dynamically controlling message repli-
cation to achieve high message delivery rate with very low
message overhead. In this paper, we present FGDR, a routing
protocol designed for DTNs by leveraging fine-grained contact
characterisation and dynamic message replication. In FGDR,
the history contact is characterised in a fine-grained manner
using a sliding window mechanism, and an up-to-date future
contact prediction can be made based on the most recent history
data. We design an efficient message replication scheme, in which
replication is controlled in a fully decentralised manner by taking
into account the expected message delivery rate, the replication
history, and the quality of the encountered node. A replica can
be generated only when it is necessary to fulfill the expected
message delivery rate. We evaluate our scheme through trace-
driven simulations, and results show FGDR can achieve much
higher message delivery rate with lower message overhead in
comparison with existing schemes.

Index Terms—Delay-tolerant networks (DTNs), fine-grained,
routing, message replication, contact pattern

I. INTRODUCTION

With the popularity of ubiquitous computing and communi-
cation, wireless mobile devices such as smartphones, tablets,
and laptops may wish to communicate at any time and in
any place, regardless of whether there exists an end-to-end
path between the source and the destination. Delay-tolerant
networking is an architecture proposed for communication in
networks that lack continuous connectivity. DTNs have many
applications such as vehicular networks, opportunistic mobile
data offloading [1], and social network analysis [2]. However,
due to the lack of contemporaneous end-to-end paths, devices
need to carry and forward messages opportunistically upon
encountering the destinations, or seek other encountered de-
vices to help message delivery. In addition, devices in DTNs
generally suffer from constraints in memory, communication
bandwidth, and battery power. These special characteristics
and constraints make routing in DTNs a challenging problem.

Contacts between devices in DTNs usually exhibit a high
degree of repetition due to the daily scheduled routines of
the persons who carry these devices [3]. Hence, most existing
routing schemes use the history of previous contacts to predict

future contacts. However, in most prediction-based routing
schemes [4] [5] [6] [7], the contact history for each pair of
nodes is compressed into a piece of coarse-grained information
called encounter predictability that is used as the routing
metric. However, this coarse-grained information represents
only the long-term average contact probability, which can not
immediately detect and adapt to the contact pattern change.
The long responding time will lead to the inaccuracy on pre-
dicting future contacts, and consequently degrade the routing
performance.

To enhance message delivery rate, most existing routing
protocols are replication-based [4] [5] [6] [8], i.e., multiple
copies (or replicas) per message are generated and spread to
the network with the expectation that at least one replica will
successfully reach the destination. In PRoPHET [4], a message
replica is generated for any encountered node that has a larger
probability to contact the message’s destination. In Spray and
Wait [9], a fixed number of message replicas per message are
initially generated by the source and spread to the network.
Spreading a small number of replicas may not achieve the best
message delivery rate, but over-spreading may also degrade
the routing performance due to message dropping caused by
message buffer overflow. A key challenge for replication-based
routing schemes is to determine the optimal number of replicas
per message that need to be generated and spread.

In this paper, we present FGDR, a routing scheme designed
for DTNs by taking the advantages of Fine-Grained contact
characterisation and Dynamic message Replication. The main
contributions of this paper are summarised as follows:
• We proposed a memory-efficient scheme to characterise

the pairwise contact pattern based on bit matrix. A slotted
sliding window mechanism is employed to extract fine-
grained information from the contact history and store
them in the bit matrix. It is able to compute the encounter
probability between two nodes within only the life time
of a given message, which can immediately detect and
adapt to any contact pattern change.

• We proposed an efficient mechanism to control message
replication. Each message in our scheme is associated
with an expected delivery rate. Message replication is
performed dynamically in a decentralised manner to
fulfill the expected message delivery rate,

• We evaluated the performance of FGDR through trace-
driven simulations. Simulation results show that: (1)
contact prediction based on fine-grained contact history978-1-5090-2185-7/16/$31.00 c©2016 IEEE

tŝĮĚŽŐ

Cambridge

MIT Reality

Fig. 1. Contacts between two randomly chosen devices in the Cambridge, MIT Reality, and WiFiDog traces

can greatly improve message delivery rate when contacts
between nodes show a high degree of repetition; (2) the
dynamic message replication mechanism can significantly
enhance message delivery rate with extremely low mes-
sage overhead in comparison with existing schemes.

The rest of this paper is organized as follows: Section II
gives an overview of FGDR. Section III illustrates the detailed
implementation of FGDR, including the representation of fine-
grained contact history, contact prediction, and dynamic mes-
sage replication scheme. Section IV evaluates the performance
of our scheme by trace-driven simulations, and Section V
concludes the paper.

II. MOTIVATION AND OVERVIEW

A. Motivation

From our observation and also as mentioned in several liter-
atures [2] [10], the daily social activities and communications
often exhibit a very high degree of repetition. Fig. 1 shows the
pairwise contacts between two active devices randomly chosen
from three data traces: Cambridge [11], MIT Reality [12],
and WiFiDog [13]. It can be seen that most contacts occurred
roughly in the same period of a day. Many of the existing
routing protocols leverage such contact regularity to enhance
their contact prediction. However, most of them utilise only a
piece of coarse-grained information for the prediction. Such
long-term average estimated predictability cannot immediately
adapt to any contact regularity change, thus that will bring
inaccuracy to the prediction of the near future. Because of
this, we decide to characterise the history contacts into a
fine-grained manner, by taking into account the contact time
between two nodes. The encounter probability for only a short
time, e.g., the lifetime of a packet, can be estimated based
on a particular period of historical information from the fine-
grained contact history.

Memory limitation is usually a critical issue for DTN
environment. Many routing protocols deploy multi-message-
copies mechanism to ensure the delivery rate as well as
the reliability of their routing prediction. However, as most
existing protocols do not have efficient stopping policy for
the message replication, they usually suffer a serious memory
overflow issue because of the massive message replicas. The
overall aim of DTN routing protocols is to reduce the message
overhead as much as possible, while still securing a high mes-
sage delivery rate. Our proposed message replication control
scheme enables a node to keep learning the network from each
time it communicates with others. A node can easily find out
by itself whether a message already has enough replicas in the
network to be delivered to the destination.

B. Protocol Overview

We consider unicast messages, where each message is char-
acterised by a source address, a destination address, a delivery
deadline, and an expected delivery rate imposed by either the
user or the upper-layer application or set with a default value.
Each node uses time-slotted sliding windows to maintain the
most recent contact history, with the specified contact time , as
shown in Fig. 2. The sliding window is divided into slots with
equal length (e.g., 1 hour), and the length of the slots controls
the granularity of the contact history. Each node keeps track
of the nodes it contacted in each time slot. In such a way the
encounter predictability can be computed based on the most
recent history, rather than a long term average estimation. As
illustrated in Fig. 2, node a generates a message at 8am, and
needs to deliver it to node b within 3 hours. The probability
for node a to directly contact node b in the following 3
hours can be estimated using only the past contacts occurred
between 8am and 11am, thereby improving the accuracy of
contact prediction. Moreover, the sliding window mechanism
can quickly respond to the changes on contact patterns by
incorporating new contacts and removing the outdated ones,
thereby overcoming the drawback of the aging mechanism.

a b

c

e

d
3h, 0.9

1h, 0.4

2h, 0.5

Original message
Message replica

0.8

0.5

0.4

9 8

9 8
8 9

8-9am 9-10am
9
8

8
9

8 9

9-10am 10-11am

C
B

D

9 8

8 9
9 8

8-9am 9-10am
9
9

8
8

8 9

9-10am 10-11am

D
A

E

Fig. 2. Message replication and forwarding

To reduce message overhead, message replication and for-
warding in our scheme is driven by the message’s expected
delivery rate in a fully decentralised manner. Each message can
generate multiple replicas, and each replica can further gen-
erate more replicas to fulfill the message’s expected delivery
rate. The expected delivery rate associated with each replica
represents the accumulative probability that is expected to be
achieved by this replica and all its descendants that are either
directly or indirectly generated based on this replica. When
node a that carries a replica encounters node b, node a stops
spreading new replicas if the expected delivery rate of the
carried replica has been fulfilled; otherwise it decides whether
a new replica needs to be forwarded to node b and how much
delivery rate this new replica is expected to achieve, based on
the probability for node b to contact the message’s destination.

An Illustrating Example: as shown in Fig. 2, node a has a
message to be delivered to node d in 3 hours with an expected
delivery rate of 0.9. According to the contact history in a′s
sliding window, node a has a probability of 0.8 to directly
encounter node d within 3 hours. So it keeps a replica for this
direct delivery. After one hour, node a encounters node b and
learns that node b has a probability of 0.5 to contact node d.
As the expected delivery rate of the original message has not
been fulfilled, node a sends a replica to node b. The expected
delivery rate for this replica is set to 0.5, and the deadline is
set to 2 hours from now. After two hours node a encounters
node c and sends another replica to node c. Since then, the
expected delivery rate (0.9) has been fulfilled, node a stops
spreading more replicas to other encountered nodes. Since the
contact probabilities may change over time, each node needs
to dynamically control message replication. For example, node
b did not encounter node d in the first hour, and the contact
probability between b and d drops to 0.2. To fulfil the expected
delivery rate of 0.5, node b spreads a new replica to node e.

III. FGDR: FINE-GRAINED CONTACT
CHARACTERISATION AND DYNAMIC MESSAGE

REPLICATION CONTROL

A. Contact Characterisation and Prediction

Each node maintains a memory-efficient bit matrix to char-
acterise the history contact. Let Lw denote the length of
the time-slotted sliding window, and Ls represent the length
of each time slot in the window. Each node a maintains a
bit matrix, denoted by Ma, to represent the recent contacts
occurred between node a and its encountered nodes during the
time period covered by sliding window. Ma is defined as

Ma[b][k] =

{
1, if maxnk

i=1 l
k
ab(i) ≥ α &

∑nk

i=1 l
k
ab(i) ≥ β;

0, otherwise,
(1)

where nk is the number of contacts occurred between a and
b in time slot k, and lkab(i) is the contact duration for the
ith contact. Ma[b][k] is marked to 1 only when there is at
least one contact in slot k with contact duration no smaller
than a threshold α, and the accumulative contact time in time
slot k is no smaller than a threshold β. The reason of using
two thresholds α and β is to take into account the following
scenario: any single contact in slot k is not long enough for the
two nodes to transfer all messages that need to be exchanged.

a Bit Matrix of node a

f

c

d

b

0 i-11 2 ...

1

0

0

0

0

1

1

0

0

1

1

0

...

...

...

...

1

1

0

1

i

0

0

1

1

Time Index

Fig. 3. Fine-grained bit matrix
Fig.3 is an example of the bit matrix held by a node. In the

slotted sliding window, the history for one week is represented
with 24×7

Ls
, and the window maintains contact history of nw =

Lw/
24×7
Ls

= Lw×Ls

168 weeks. We assume nw is an integer, i.e.,
Lw is divisible by 24×7

Ls
. Given any slot k in the future, the

sliding window must contain nw slots that correspond to the
same period of a day as slot k, but in different weeks. The
index for such a slot m is index(m) = (k−m× 168

Ls
) mod Lw

Ls
,

where m ∈ [0, nw − 1], and mod is a Modulo operation that
returns positive remainder. Let pab(k) denote the probability
that nodes a and b will contact in slot k. Then pab(k) can be
estimated using the history characterised by these nw slots as
follows:

pab(k) =

∑nw−1
m=0 Ma[b][index(m)]

nw
. (2)

Suppose node a carries a message/replica that needs to
be delivered to node b during a time period [ts, te]. Then
pab(ts, te), the overall probability that covers the entire mes-
sage lifetime, can be estimated as follows:

pab(ts, te) = 1−
k+ te−ts

Ls∏
i=k

(1− pab(i)). (3)

B. Message Replication and Routing

Each message or replica m has a lifetime Tm and an
expected delivery rate Em, where Em is the accumulative
delivery rate to be achieved by this message/replica and all
other replicas that are either directly or indirectly generated
based on m. Based on Em, the node that carries m will
decide how many replicas should be generated to fulfill Em.
Suppose that k replicas have been generated and forwarded
to nodes in Fm = {f1m, f2m, ..., fkm}, and the probabilities
for these k replicas to reach the destination is given in
Pm = {p1m, p2m, ..., pkm}. The delivery rate achieved by m and
the k replicas, denoted by Pm(k), can be computed as follows:

Pm(k) = 1−
k∏

i=0

(1− pim), (4)

where p0m is the probability of delivering m from the node that
carries m directly to the destination. Note that the computation
of Pm(k) does not require the maintenance of either Fm or Pm

since the production part of Eq. (4) is the probability that all
replicas failed to reach the destination, which can be computed
incrementally upon the generation of each replica. If Pm(k) ≥
Em, the node that carries m will stop generating more replicas.

Algorithms 1 and 2 give the procedures of message repli-
cation and forwarding at sender (node a) and receiver (node
b), respectively. When node a encounters node b, node a first
delivers all its messages that are destined to node b. After that
node a checks how node b can help deliver the other messages
it carries. To do this, node a generates a summary vector
SVa that contains information of the undelivered messages
in the format of < IDm, Destm, Tm, γm >, where IDm and
Destm are the message ID and destination, Tm is the message
lifetime, and γm is the minimum expected delivery rate for a
replica of m that is used to eliminate bad forwarders. After
generating SVa, node a sends it to node b. Upon receiving
SVa, for each < IDm, Destm, Tm, γm >, node b will check
if it has already carried a replica with IDm. If not, node b
calculates the probability for itself to deliver a replica of m
to the destination before the deadline, denoted by p̄bDestm ,
according to Eq. (3). If p̄bDestm ≥ γm, it indicates that node

Algorithm 1: Replication and Forwarding at Sender
/* Upon encountering node b: */

1 for each message m in a′s buffer do
2 if Destm == b then
3 Forward message m to node b;
4 Delete message m;

5 else
6 Add < IDm, Destm, Tm, γm > to SVa;

7 Send SVa to node b;

/* Upon receiving ACK for SVa: */
8 for each < IDm, p̄m > in ACK do
9 case Pm(k) < Em&p̄m ≥ Em

10 Forward message m to b;

11 case Pm(k) < Em&p̄m < Em

12 Generate a replica of m and forward it to b;
13 Update Pm(k);

14 case Pm(k) ≥ Em&p̄m > p0m
15 Forward message m to b;

Algorithm 2: Replication and Forwarding at Receiver
/* Upon receiving SVa from node a: */

1 for each < IDm, Destm, Tm, γm > in SVa do
2 if node b carries a replica with IDm then
3 Continue;

4 else
5 Calculate p̄bDestm according to Eq. (3).
6 if p̄bDestm ≥ γm then
7 Add < IDm, p̄bDestm > to the ACK message;

8 Send ACK to node a;

b is a good forwarder for m, and < IDm, p̄bDestm > is added
to the ACK message. In the end, node b sends the ACK
message to node a and informs which messages it chooses
to help delivering. After receiving the ACK message, for each
< IDm, p̄m >, node a decides whether to forward message
m or send a replica of m to node b using the following rules:

Rule1: If Pm(k) < Em & p̄m ≥ Em, node a directly
forwards the message/replica m to node b. This is
because that the expected delivery rate allocated for
m has not been fulfilled, but node b can achieve an
expected delivery rate no smaller than Em if it carries
m. Hence, there is no need to generate a new replica.

Rule2: If Pm(k) < Em & p̄m < Em, node a generates
a new replica and sends it to node b. The expected
delivery rate for the new replica is the probability for
node b to contact the destination, and node a updates
Pm(k).

Rule3: If Pm(k) ≥ Em & p̄m > p0m, node a forwards m to
node b. This is because, even though the expected
delivery rate Em has been fulfilled, node b can
provide higher delivery rate than node a.

An Illustrated Example: As shown in Fig. 4(a), node a has a
message to be delivered to node d in 9 hours with an expected
delivery rate of 0.9. The probability for node a to send the
message to node d through direct contact is 0.4. As shown

in Fig. 4(b), node a encounters node c after one hour, and
forwards a replica to node c according to Rule2. The expected
delivery rate for this new replica is set to 0.8. After two hours
node a encounters node b and forwards it another replica. After
that, the expected delivery rate for the original message at node
a has been fulfilled, and node a stops spreading replicas. As
shown in Fig. 4(c), node b carries a replica and encounters
node e that has a larger delivery rate (0.7) than b. According
to Rule3, node b forwards the carried replica to node e.

a

e

c d

0.4

0.8

0.3

a d
9h, 0.9

0.4

a

b

c d
9h, 0.9

0.4

0.5

7h, 0.5

a

b e

c d

0.4

0.8

(a) (b)

(d)(c)

b

Current Contact Potential Contact

0.8

9h, 0.9

8h, 0.8

8h, 0.8

0.7

6h, 0.5

9h, 0.9

8h, 0.8

6h, 0.5
f

5h, 0.45

0.45

Original Message Replica

0.5

Fig. 4. Illustration of replication and forwarding

When two nodes encounters, they will first update the
expected delivery rate via direct contact for each message they
carry. It might happen that, for a replica carried by node a,
the probability for node a to deliver the replica directly to
its destination drops below the replica’s expected delivery rate
as time elapses. In this case, node a will resume message
replication and spread more replicas to fulfill the expected
delivery rate. As illustrated in Fig. 4(d), node e carries a replica
with an expected delivery rate of 0.5, but the probability for
node e to directly send the replica to node d drops to 0.3
after one hour. So node e spreads a new replica to node f to
help fulfilling the expected delivery rate of 0.5. It can be seen
that, driven by the message’s expected delivery rate, message
replication is performed online by taking into account the real-
time network conditions and the replication history.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme
through trace-driven simulations. We first investigate the im-
pact of parameter setting on routing performance, and then
compare with Epidemic, PRoPHET, and 3R in terms of
average delivery rate and message overhead. We used the
following two representative DTN traces:

Cambridge [11]: This trace includes Bluetooth sightings by
graduate students carrying iMotes for six days, and contains
more than 200 devices. In our simulations, we extend it to 2
months by duplicating the original trace, and add some noise
by shifting each duplicated contact for δ seconds where δ is
randomly chosen from [-4500, 4500]. So the pairwise contacts
in this data trace have a high degree of repetitions.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

A
ch

ie
ve

d
D

el
iv

er
y

R
at

e

Expected Delivery Rate

 Cambridge
 MIT Reality

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
es

sa
ge

 O
ve

rh
ea

d

Expected Delivery Rate

 Cambridge
 MIT Reality

Cambridge MIT Reality
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 Weight [0.1, 0.2, 0.3, 0.4]
 Equal-weight [0.25, 0.25, 0.25, 0.25]

A
ch

ie
ve

d
D

el
iv

er
y

R
at

e

(a) (b) (c)

168 336 504 672
0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

A
ch

ie
ve

d
D

el
iv

er
y

R
at

e

Window Size (slots)

 Cambridge
 MIT Reality

Fig. 5. (a) and (b) show the impact of the expected message delivery rate; (c) shows the impact of window size;

MIT Reality [12]: We used the devicespan subtrace that
records Bluetooth contacts among faculties and students at
MIT for ∼ 9 months, and this trace contains more than 20,000
devices. The pairwise contacts in this data trace have a medium
degree of repetitions, and it contains many random contacts.

A. Simulation Setup

Due to the large difference on node popularity, the selection
of sources and destinations for the two traces are slightly
different. In the Cambridge trace, 30 most active nodes are
selected as sources and destinations, whereas in the MIT trace
the destination for each message is selected randomly from
20 most active nodes during the lifetime of that message.
This selection avoids negligible delivery ratio caused by nu-
merous inactive nodes. All protocols use the same message
trace, which is generated as follows: each source generates a
message with a probability of 0.1 in every 600 seconds, and
the message destination is randomly chosen from the set of
destinations. The lifetime of each message varies from 4 hours
to 1 week, and the size of a message varies from 2k bytes to
100k bytes.

To make fair comparisons, in each simulation run, the net-
work is warmed up for one month with no messages generated,
and there is also no message generated in the last week to
avoid any wandering packet at the end of the simulation. All
parameters in PRoPHET are configured to the recommended
values [14]. Unless specially noted, the parameters in FGDR
are configured as follows: the sliding window is set to 4 weeks
(672 slots, 1 hour per slot), the expected delivery rate for each
message is 0.9, and the minimum expected delivery rate γm
is set to 0.1.

B. Impact of Protocol Parameter Configuration

1) Expected Message Delivery Rate: Figs. 5 (a) and (b)
show the achieved average message delivery rate and the
message overhead with the variation of the expected message
delivery rate. For the Cambridge trace, the achieved message
delivery rate slightly increases with the increase of the ex-
pected message delivery rate, and drops a little at the end.
The message overhead slightly increases, and the maximum
is just 0.21. This is due to the regularity of the Cambridge
trace as it is produced by duplicating the original trace. Even
though noise has been added, the contacts between nodes still
exhibit strong weekly repeat patterns. Hence, most pims in Eq.

(4) are 1, and very few replicas need to be generated. Since our
approach can capture the contact patterns, nodes can propagate
replicas to the right relays so that the message delivery rate
and overhead remain roughly constant. This demonstrates that
our scheme can achieve superior performance when contacts
between nodes exhibit a high degree of repeated patterns.

For the MIT trace, with the increase of the expected message
delivery rate, the achieved delivery rate increases gradually
except a sharp drop when the expected delivery rate is set to 1.
The message overhead is proportional to the expected delivery
rate when the expected delivery rate is no larger than 0.9.
Beyond that, the message overhead increases significantly, and
reaches around 3.5 when the expected delivery rate is 1. This
phenomenon can be explained using Eq. (4). Theoretically,
Pm(k) can never reach 1 if all pims are smaller than 1.
Since the MIT trace contains many random contacts, most
pims are smaller than 1. So each source node continues
spraying replicas upon encountering good forwarders unless
the expected delivery rate has been fulfilled.

2) Size of the Sliding Window: Fig. 5 (c) shows the impact
of the sliding window size on the achieved average message
delivery rate. For the Cambridge trace, the size of the sliding
window does not have much impact on the average delivery
rate. This is due to the regularity of this trace since maintaining
only one week contact history is still able to precisely represent
the nodes contact patterns. For the MIT trace, the achieved
average delivery rate improves with the increase of the window
size. Since contacts in this trace do not have perfect repeat pat-
terns, a larger sliding window can better represent the contact
patterns and improve the accuracy of contact prediction.

C. Comparison with Existing Schemes

1) Cambridge Trace: Figs. 6 (a) and (b) show the average
delivery rate and the message overhead of the four schemes
by varying the size of the per-node message buffer. For
Epidemic, the achieved message delivery rate increases with
the increase of message buffer size as it performs blind
flooding. For the other three schemes, the achieved message
delivery rate first increases with the increase of buffer size
and then remains steady. This is because all these three
schemes control message replication, and message delivery
rate cannot be further improved when the message buffer is
large enough to carry messages. It can be seen that both
FDGR and 3R outperform PRoPET for all buffer settings,

500kB 1MB 2MB 4MB 6MB 8MB

0.3

0.4

0.5

0.6

0.7

A
ch

ie
ve

d
 D

e
liv

e
ry

 R
a

te

Memory Buffer

 Epidemic
 PRoPHET
 3R
 FGDR
 FG

500kB 1MB 2MB 4MB 6MB 8MB

0

10

20

30

40

M
e

s
s
a
g

e
 O

v
e

rh
e

a
d

Memory Buffer

 Epidemic
 PRoPHET
 3R
 FGDR
 FG

(a) (b) (c)

1MB 2MB 4MB 6MB 8MB 10MB

0.3

0.4

0.5

0.6

0.7

A
c
h
ie

v
e
d

 D
e

liv
e

ry
 R

a
te

Memory Buffer

 Epidemic
 PRoPHET
 3R
 FGDR
 FG

1MB 2MB 4MB 6MB 8MB 10MB
0

40

80

120

160

M
e

s
s
a

g
e

 O
v
e

rh
e

a
d

Memory Buffer

 Epidemic
 PRoPHET
 3R
 FGDR
 FG

(d)

Fig. 6. Performance of FGDR, Epidemic, PRoPHET and 3R: (a) and (b) for Cambridge trace, and (c) and (d) for MIT trace

especially when message buffer is small. This is because
FDGR and 3R use fine-grained contraction history to predict
future contacts, by which the accuracy of contact prediction
has been greatly improved. When the message buffer is set
to 1M bytes/node, the average delivery rate achieved by
FGDR is improved by 47% in comparison with PRoPHET.
It can be seen that FGDR outperforms 3R under all buffer
settings due to the delivery rate driven message replication.
However, it is worth noting that the message overhead in
FGDR is not significantly increased and remains very stable,
as shown in Fig. 6 (b). When the message buffer is set to
6M bytes/node, the message overhead of FGDR is only 0.09,
whereas PRoPHET and Epidemic have a message overhead
of 5 and 39, respectively. These demonstrate that FGDR can
achieve remarkable performance when nodes are memory-
constrained and have regular contact patterns.

2) MIT Trace: Figs. 6 (c) and (d) show the performance
of the four schemes using the MIT Reality trace. Generally
speaking, the average message delivery rate and message
overhead have the same trends as those in the Cambridge
trace. FGDR achieves higher average delivery rate than the
other schemes in most cases, but with extremely low overhead.
When message buffer is set to 4M bytes/node, the average
delivery rate achieved by FGDR is improved by 15.3% in
comparison with PRoPHET, but the message overhead in
PRoPHET is more than 38 times of that in FGDR. 3R achieves
roughly the same message delivery rate as PRoPHET when
message buffer is no larger than 4M bytes/node, but performs
much worse than PRoPHET when message buffer is large.
This is because the MIT trace contains numerous random
contacts that show no discernible patterns, and 3R keeps only
a single copy for each message which is not enough to achieve
high message delivery rate. When message buffer is set to 10M
bytes/node, Epidemic and PRoPHET performs slightly better
than FGDR, but this slight improvement was achieved by a
significant increase on message overhead.

V. CONCLUSIONS

In this paper, we propose an efficient routing scheme called
FGDR for DTNs to achieve high message delivery rate with
extremely low message overhead. In FGDR, the accuracy
of contact prediction is improved by characterising contact
history in a fine-grained manner, and message replication is

controlled in a decentralised way by taking into account the
expected message delivery rate, the replication history, and the
real-time network conditions. Trace-based simulations demon-
strate that FGDR can achieve remarkable performance when
contacts between nodes have a high degree of repetitions, and
performs better than other schemes even when the contacts
between nodes are more random, especially when message
buffer size is small. Future work is to investigate more efficient
solutions to store the bit matrix to further reduce the storage
requirement for maintaing fine-grained contact information.

REFERENCES

[1] P. Hui, V. Kumar, M. Marathe, and A. Jianhua Shao ;and Srinivasan,
“Mobile data offloading through opportunistic communications and
social participation,” IEEE Trans. Mobile Comp., vol. 11, no. 5, pp.
821 – 834, 2012.

[2] Y. Zhang and J. Zhao, “Social network analysis on data diffusion in
delay tolerant networks,” in Proceedings of MobiHoc, 2009, pp. 345–
346.

[3] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding
individual human mobility patterns,” Nature, pp. 779–782, 2008.

[4] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in inter-
mittently connected networks,” SIGMOBILE Mob. Comput. Commun.
Rev., vol. 7, no. 3, pp. 19–20, 2003.

[5] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “Maxprop: Rout-
ing for vehicle-based disruption tolerant networks,” in Proceedings of
INFOCOM, 2006, pp. 1–11.

[6] Q. Yuan, I. Cardei, and J. Wu, “An efficient prediction-based routing in
disruption-tolerant networks,” IEEE Trans. Parallel Distrib. Syst, vol. 23,
no. 1, pp. 19–31, 2012.

[7] X. Chen, J. Shen, T. Groves, and J. Wu, “Probability delegation
forwarding in delay tolerant networks,” in Proceedings of ICCCN, 2009,
pp. 1–6.

[8] A. Vahdat and D. Becker, “Epidemic routing for partially-connected ad
hoc networks,” Tech. Rep., 2000.

[9] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: An
efficient routing scheme for intermittently connected mobile networks,”
in Proceedings of WDTN, 2005, pp. 252–259.

[10] S. Moon and A. Helmy, “Understanding periodicity and regularity of
nodal encounters in mobile networks: A spectral analysis,” in Proceed-
ings of GLOBECOM, 2010, pp. 1–5.

[11] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chain-
treau, “CRAWDAD data set cambridge/haggle (v. 2006-01-31),”
http://crawdad.org/cambridge/haggle/, 2006.

[12] N. Eagle and A. S. Pentland, “CRAWDAD data set mit/reality (v. 2005-
07-01),” Downloaded from http://crawdad.org/mit/reality/, 2005.

[13] M. Lenczner, B. Grgoire, and F. Proulx, “CRAWDAD data set ilesans-
fil/wifidog (v. 2007-09-07),” http://crawdad.org/ilesansfil/wifidog/, 2007.

[14] A. Lindgren, A. Doria, E. Davies, and S. Grasic, “Probabilistic routing
protocol for intermittently connected networks,” draft-irtf-dtnrg-prophet-
10, 2012.

